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1. Introduction

Let (£2, P, F,{F.}i1>0) be a filtered probability space which satisfies the usual hypoth-
esis. We are interested in finding an L?(R) (or an appropriate function space)-valued
predictable process u(t) which satisfies the stochastic partial differential equation

du(t,z) + div, F(u(t, z)) dt = o(z,u(t,z)) dW(t) t>0,z € R, (1.1)
with the initial condition
u(0, ) = up(x), xR (1.2)

In the above, W (t) is an one-dimensional standard Brownian motion, F : R — R? is the
flux function, and o (z,u) is a real valued function defined on the domain RY x R.

In the case where o = 0, Eq. (1.1) becomes a standard scalar conservation law with
spatial dimension d. It is well-known for conservation laws that solutions (that are ob-
tained by method of characteristics) may develop discontinuities in finite time even when
the initial data is smooth. In other words, the problem (1.1)-(1.2) does not have smooth
solutions in general, even when the right hand side is zero. In this situation one has
to invoke the notion of weak solutions, but the issues would persist as there could be
infinitely many weak solutions to a given problem. It was a huge step forward for ana-
lytical understanding of scalar conservation laws when Kruzkov came up with his idea of
entropy solutions. Kruzkov’s notion of entropy condition correctly isolates the physically
relevant solution in a unique way, and there is a large body of literature (see [9,4] and
references therein) that has emerged on this subject.

Stochastic conservation laws is a relatively new area of pursuit. Only recently the
conservation laws with stochastic forcing have attracted the attention of many authors
[8,12,10,5,18,3,6], and resulted in significant momentum in the theoretical development
of such problems. As its deterministic counterpart, it is required to have a weak formula-
tion coupled with an entropy criterion to establish the wellposedness for such problems.
An equation of type (1.1) could be interpreted as the equation that describes conserva-
tion of physical quantities that are subjected to random force fields modeled by diffusion
noise. One of the early works in this direction was [10], where one dimensional stochastic
balance laws were studied where o is independent of x. The authors employed the split-
ting method to construct approximate solutions, and the approximations were shown to
converge to a weak (possibly non-unique) solution. At around the same time, Khanin et
al. [11] published a very influential article describing some statistical properties of Burg-
er’s equations with stochastic forcing. When the noise term on the right hand side is of
additive nature i.e. 0 = o(t,z), J.U. Kim [12] extended Kruzkov’s entropy formulation
and established the wellposedness for one dimensional problems under the assumption
that o € C((0,00) : W}>°) and has compact support. The straightforward adaptation
of the deterministic entropy inequalities fails to capture the noise—noise interaction, and
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the standard mechanism to derive the L'-contraction principle does not apply for general
o. This issue was finally resolved by Feng and Nualart [8] with the introduction of the
notion of strong entropy solution. In [8], the authors established the uniqueness of strong
entropy solution in LP-framework for several space dimensions. The existence, however,
was restricted to one space dimension. We also refer to the recent articles by Debussche
and Vovelle [5] and by Chen et al. [3] for the existence in the multi-dimensional case. In
[5], the authors obtain the existence via kinetic formulation. In [3], the authors use the
BV solution framework. In this paper, we offer a weaker entropy formulation for (1.1)
and establish wellposedness in the LP-framework. In addition, we refer to [19,17,16,15,
14,13,7,2] for additional details relevant to the topic.

In our view, the article [8] by Feng and Nualart is no less than a milestone of the
subject and presents a comprehensive theory of entropy solutions for stochastic conser-
vation laws. We draw our primary motivation from [8], but take a critical outlook to
the approach and raise a few objections to some of the methods and offer an alternative
which we perceive as better suited to the problem. The ordinary entropy inequalities in
the stochastic case do not fully capture the noise—noise interactions and it may not be
possible to replicate Kruzkov’s approach to get the L'-contraction principle. This issue
is resolved by Feng and Nualart by introducing an additional condition called strong
entropy condition. However, the entropy inequalities in [8] could be described as weak in
space but strong in time. Moreover, the strong entropy condition is related to this for-
mulation and reflects the strong-in-time picture. This formulation easily leads to the L*
contraction principle, and uniqueness for such formulation naturally follows. However,
the question of existence becomes much more subtle. As its deterministic counterpart,
the existence is settled via vanishing viscosity method in [8] and this is where our view-
point deviates from that of Feng and Nualart [8]. The proof of existence in [8] requires
the vanishing viscosity approximates to converge for all time points and the authors have
made attempts to justify the convergence for all time points. However, a careful analysis
reveals that convergence is established for almost every time points. This puts a question
mark against the validity of the results in [8]. The nature of compactness of vanishing
viscosity approximates finds a perfect match with the entropy formulation which is weak
both in time and space, and which would coincide with entropy formulation of Feng and
Nualart [8] if the solution process had continuous sample paths. In [8], the authors make
an attempt to establish path-continuity for the vanishing viscosity limit but there are
flaws in the proof. We have added a separate section in this article where we explain
these flaws and describe the implications in details. With this apparent inconsistencies
in mind, we find it necessary that entropy inequalities are formulated weak both in time
and space, and the strong entropy condition has to be accordingly specified to capture
noise—noise interaction. In this article we set out to exactly do that.

The rest of the paper is organized as follows. In the next section, we describe the
technical framework, define the notion of strong entropy solution for (1.1)-(1.2) and
state the main theorems. In Section 3, we establish the uniqueness of strong entropy
solution of (1.1)-(1.2) by deriving the L! contraction property. In Section 4, we briefly
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discuss the wellposedness of vanishing viscosity approximation of (1.1) and establish the
existence of entropy solution for (1.1)—(1.2). In Section 5, we show that the vanishing
viscosity solution is indeed a strong entropy solution. Finally, in the last section we
describe the issues related to the path continuity of vanishing viscosity limit and its
implications. We close this section with a description of the notations and symbols and
the list of assumptions.

By C, K, etc., we mean various constants which may change from line to line. The
Euclidean norm on any Re-type space is denoted by | - |. Furthermore, let II7 = (0,7) x
R?. In the rest of the paper, the following assumptions hold:

(A.1) For every k = 1,2, ...,d, the functions Fj(s) € C*(R), and Fy(s), F}.(s) and F}/(s)
have at most polynomial growth in s.
(A.2) There exists a positive constant C' > 0 such that

|o(y,v) — o2, u)] < Cju—v|+]z—yl).
(A.3) There exists a nonnegative function g € L>(R?) N L?(R?) such that
|lo(z,u)| < g(z)(1+ |ul).

(A.4) The set {r e R: F"(r) # 0} is dense in R.
2. Technical framework and statements of the main results

The notion of entropy solution is built around the so-called entropy flux pairs. We
begin this section with the definition of entropy flux pairs.

Definition 2.1 (Entropy flur pair). (3,¢) is called an entropy flux pair if 3 € C?(R) and
B >0,and ¢ = ((1,C2, .., Ca) : R = R? is a vector field satisfying

¢'(r)=p'(r)F'(r).
An entropy flux pair (3, () is called convex if 3”(s) > 0.

As in the deterministic case, the primary motivation behind the notion of entropy
solution comes from parabolic regularization. However, it requires considerable amount
of work (cf. [8]) to show that perturbation by small diffusion will indeed regularize the
solutions. To proceed, we assume that u is a smooth predictable solution of the parabolic
perturbation of (1.1), i.e. u satisfies

du(t,z) + divy F(u(t,)) dt = o(z,u(t,z)) dW (t) + eAu(t, z) dt, (2.1)

where € > 0 is a small positive number. As compared to the deterministic case, we need
to replace the deterministic chain rule for derivatives by Itd chain rule to derive the
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entropy inequalities. Let (3, () be a convex entropy flux pair. Then, by It6 formula, we
have

dB(u(t, x)) + dive ¢ (u(t, x)) dt
= o, ult, ) (u(t, ) AW (1) + Lo (a, ult, ) 8" (ult, 7)) di
+ (28408 (ult, ) — 8" (u(t, x)) | Vou(t, z)|*) dt.
For each 0 < 1) € C12([0,00) x R?), we apply Itd product rule to obtain
d(B(u(t,z))v(t, @) = oup(t,z)B(ult, ) dt — (¢, x) divy ¢ (u(t, x)) dt
+ (t, z)o (z, u(t, ) B (u(t,z)) dW (1)
+ %w(t,x) o?(z,u(t,z)) 8" (ult,z)) dt
+1(t, @) (eAmaB(ult, ) — 8" (u(t,2))|Voult, z)|?) dt.

It is to be kept in mind that 3 is nonnegative and convex and v is nonnegative. Therefore,
for every T > 0, we have

0 < (B(u(T,.), (T, "))

< (B(u(0,9).0(0,9) + [ {¢(u(r,). Va(r, ) dr

+ / <ﬂ(u(7",~)),8t1/)(7",~)>d7‘+ / <O’(~,U(T,'))ﬂ/(u(7",')),’(/)(7“,')>dW(7‘)

(0,77 (0,T7]
by [ ()8 (). vl ) dr + OFC) 22)
(0,7]

Both the left-hand and right-hand sides of the inequality are stable under ¢ — 0, provided

P
we have Lj

type stability of (2.1) as € — 0. The above inequality leads to the entropy
inequalities which are weak both in time and space.

Definition 2.2 (Stochastic entropy solution). An L?(R%)-valued {F; : t > 0}-predictable
stochastic process u(t) = u(t, x) is called a stochastic entropy solution of (1.1) provided
(1) for each T > 0, p = 2,3,4...

sup E[Hu(t)”ﬂ < 00.
0<t<T
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(2) For 0 < ¢ € CL2([0,00) x R%) and each convex entropy pair (3, (),

/B(uo(w))w(o,x) dw—i—/ﬂ(u(t,x))atw(t,x) dtdx
R4 oy

+ /C(u(t,a:)) .Vw(mx)dtdx—l—%/02(36,u(t,x))ﬁ”(u(t,x))w(t,m) dzx dt

It
T
+O/RZU(:r,u(t,:p))ﬁ/(u(ux))w(t,x) drdW(t) >0 P-as.

In the deterministic case, the entropy inequalities lead to the L'-contraction principle
which implies uniqueness. In the stochastic case, however, the entropy inequalities alone
do not seem to give rise to desired L!'-contraction principle. Definition 2.2 does not
reveal much about the noise—noise interaction when one tries to compare two solutions
of the same problem. We refer to [3] for detailed mathematical description of this issue.
However, to ensure uniqueness, we need to arrive at a version of so-called strong entropy
condition which is compatible with the weak-in-time formulation.

Let p and p be the standard mollifiers on R and R? respectively such that supp(p) C
[—1,0] and supp(e) = B1(0). For § > 0 and dy > 0, let ps, (1) = %p(%) and g5(x) =
s70(%). For a nonnegative test function 1) € C2%([0, 00) x R?) and two positive constants

d,dp, define

G550 (8, T3 8,y) = pso(t — s)os(x — y)(s,y). (2.3)

Note that ps,(t —s) # 0 only if s — Jp <t < s, and therefore ¢s5,(t,x; s,y) = 0 outside
s—0p <t<s.

Definition 2.3 (Stochastic strong entropy solution). An L?(R%)-valued {F; : t > 0}-
predictable stochastic process v(t) = v(t, x) is called a stochastic strong entropy solution
of (1.1) provided

(7) it is a stochastic entropy solution.
(i7) For each L?(R%)-valued {F; : t > 0}-adapted stochastic process i(t,z) satisfying,
forT'>0,p=2,3,4...

sup E[Ha(t)Hi] < 00,
0<¢<T

and for each 8 € C*°(R) such that 5" and " are of compact support and 0 < 1) €
C>([0,0) x RY), and

h(r, s;v,y) = /a(w,ﬂ(r,x))ﬁ’(ﬂ(r, x) — v)¢5750(r,x;s,y) dz,

x
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where ¢s 5, is defined by (2.3),

T T
O/y/lo/h(r,s;v,y) dW(T)]

< —EU /U(m,ﬂ(r,x))a(y,v(r,y))ﬁ"(a(r,:10) ~o(ry)

It It

E dy ds]

v=v(s,y)

X Ga.50 (1 2 5,y) dr-de dy ds} + A(5,80),

where A(6,dp) is a function depending on 8, v such that A(d,d9) — 0 as dy — 0.

Remark. The weak-in-time formulation is also manifested in the strong entropy condition.
In our formulation the function A(d,dp) plays a similar role as that of A(s,t) in Feng

and Nualart.

The above definition does not say anything explicitly about the entropy solution
satisfying the initial condition. However, it satisfies the initial condition in a certain
weak sense. We have the following lemma.

Lemma 2.1. Any entropy solution u(t,x) of (1.1) satisfies the initial condition in the

following sense: for every nonnegative ) € C2(R?) such that supp(v) = K,

lim F
h—0

h
%//|u(t,x) uo(x)|1/)(x)dxdt] =0.
0 K

Proof. Since K is of finite measure, it is enough if we instead prove

h
1
}lLiL%E lﬁ //}u(t,x) - uo(x)’2¢(aj) dx dt] = 0. (2.4)
0 K
For § € (0,1), let K5 = {x : dist(z, K) < d}. Note that, for any 6 > 0,
E/|u(t,:c) - UO(x)}2¢($) dz
K

<28 [ [ Jult.o) ~ o) Pota)este — y) dedy

yeKs xeK

+2E / / Juo () — uo (@) *v(@)es(x — y) d dy (2.5)

yeKs €K
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where {05} is a sequence of mollifiers in R?. In other words

h
1 2
Ego//\u(tvx) —uO(x)! Y(x)dxdt
. h
E/ / / ‘u(t,x) - Uo(y)|2¢($)ga(x —y)dxdydt
0 yeKs z€K
+2E / / uo(y) —UO(x)!2¢(x)ga(x—y) dz dy. (2.6)
yeEKs z€K
Now let (¢, z) = 7(15)1/)( )Qé(:c —y), where y(t) = 2 for 0 < ¢ < h. Now, let 8(u) =
(u—uo(y))? and (u) = J;" 2(r—uo(y))F'(r) dr = 21‘0 1 () dr—2uo(y) (F(w)— F(0)) <

C(1+ |ug(y)|* + |u\P) for some positive integer p. With the above entropy flux pair (3, §),

we apply Definition 2.2 and have

h
Ellzo/ / /|“(t,9:)*uo(y)ﬁ/}(x)g(s(xfy)da:dydt

yeKs xeK

gE/ /\uO<y>—w(x)ﬁw(m)g(s(x—ymxdy
yeKs xeK
h

+05*2/E / /(1+|u(r,x)|p+|u0(y)|2)da@dydr

0 yeKs xe K

i
C/ / :curx dxdr

zeK

Hence by passing to the limit h — 0, we have

h
lim sup E% / / / |u(t,x) — uo(y)|2¢(m)gg(m —y)dxdydt
0

h—0
yeEKs z€K
sE / / |uo(y) — Uo(x)‘Zi/)(ﬂf)Qa(x —y)dxdy.
yeEKs veK

We combine (2.6) and (2.7) and obtain

lim sup £ — //|uta: — ug(x ‘w ) dx dt

h—0



I.H. Biswas, A.K. Majee / Journal of Functional Analysis 267 (2014) 2199-2252

<A4FE / /’uo(y)—uo ‘1/) x)os(x —y)dxdy for all 6 > 0.
yeKs xe K

We now simply let § — 0 in the RHS of (2.8) and obtain
h

lim sup E% //’u(t,x) - uo(x)lzw(x) dx dt <O0.

h—0
0 K

Hence (2.4) follows as ¥ > 0. This completes the proof. O

2207

(2.8)

Next, we describe a special class of entropy functions that plays an important role in

the sequel. Let 8 : R — R be a nonnegative smooth function satisfying

p0)=0,  Bl=r)=p@r),  P(=r)==p(-r), B"=0,

and
-1 when r < —1,
B'(r)=1% €[-1,1] when |r| <1,
+1 when r > 1.

For any € > 0, define 5. : R — R by

Be(r) —eﬁ(’;).

Then

M.
Ir| = Mye < Be(r) < || and  [B/(r)] < =1,

€

where

M, = sup ||r\ - B(r)], My = sup }B”(r)|.
lr|<1 [r[<1

By simply dropping €, for 8 = 5. we define

FP(a,b) = / B (o — b)F}(o) d(0),

Ff(a,b) = (F{ (a,b), F} (a,b), .., F} (a,b)),
Fy(a,b) = sign(a — b) (Fi(a) — Fi(b)),
F(a,b) = (Fi(a,b), Fx(a,b),.. ,Fd(a,b))

We are now ready to state the main results of this paper.

(2.9)
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Theorem 2.2 (Uniqueness). Let the assumptions (A.1)—(A.3) be true, and that
Np=12.. LP(RY)-valued and Fo-measurable random variable uq satisfies

E[Huo||£ + ||u0||’2’] <oo forp=1,2,...

Suppose that u, v be two stochastic entropy solutions of (1.1) with the same initial con-
dition u(0) = ug = v(0), and that at least one of u, v is a strong stochastic entropy
solution. Then almost surely u(t) = v(t) for almost every t > 0.

We further assume that d = 1, and state the existence theorem of strong entropy
solution.

Theorem 2.3 (Exzistence). Let the assumptions (A.1)—(A.4) be true and d = 1. Further-
more, (),_1 5 LP(RY)-valued Fo-measurable random variable uq satisfies

E[Huo||£ + ||u0||’2’] <oo forp=1,2,...
Then there exists a strong entropy solution for (1.1)-(1.2).

Remark. In the sequel it is going to be clear that our results are still valid if the
noise is of the form Y .*, o;(z,u) dW;(t). This is a special case of space-time noise
J. o(u,z,2)0,W(t, dz) in [8]. This space-time noise structure does have close resemblance
with Lévy/pure jump type noise structure fz N (dz, dt). From our recent experience of
working with conservation laws with Lévy noise, we confidently infer that our results
could be extended to the generalized noise structure of [8].

3. Proof of uniqueness

The proof of uniqueness follows a line argument that suitably adapts Kruzkov’s
method of doubling the variables to the stochastic case. The central idea of the proof
is to analyze the evolution of [Ju(t) — v(t)| 11 (re) as a random quantity, and then ar-
rive at the conclusion that E(|u(t) — v(t)||11(rasy) decreases as a function of time. In
our context also we use doubling of variables, and approximate |lu(s) — v(s)| 11 (ra) by
fOT Jrawga Bult,z) — v(t, y))(t)p(x, y) de dy dt, where 3(r) is a suitable smooth con-
vex approximation of |r| and ¢(z,y) is a smooth approximation for 0, (y) and v (t) is a
smooth approximation of d4(¢). We will, however, have to handle additional difficulties
due to the stochastic forcing.

Let u be a stochastic entropy solution and v be a stochastic strong entropy solution to
Eq. (1.1). Let 0 < ¢ € C12([0, 00) x R?) be given and 3 = f3. (as described above). For a
fixed real number k € R, B(-—k) is a convex smooth function. Therefore (3(-—k), F#(-, k))
could be chosen as the corresponding convex entropy flux pair where F%(a, b) is described
above. Next, we lay down the entropy inequality for u(t, z) relative to the convex entropy
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pair (3(- — k), F?(-,k)) and substitute k& by v(s,y) and integrate with respect to s,y to
get

//ﬂ(uo(as) —v(8,9)) 05,5, (0, 2, s, y) da dy ds

It R
+//5(“(tax)—v(s,y))8t¢>5,5o dzx dt dy ds
I It
T T
+//l/h(ra S,,’U,y)dW(T’)‘| dyds
0y -0 v=0(s,y)

T
+ % //02(x,u(t,x))5//(u(t,ﬂc) —v(5,9)) bs,50 (L, 73 5,y) da dt dy ds
Iy 0 Re
+//Fﬁ(u(t,x)w(&y))vz%,go da dt dy ds > 0, (3.1)
Iy Iy

where II7 = [0,T] x R¢ and

h(r,s;v,y) = /o(x,u(r, x)),B'(u(r, x) — v)¢5750 (r,x;s,y)de.

x

Similarly, since v(s, y) is also a stochastic entropy solution, by substituting k& = u(¢, x)
and integrating with respect to (¢, z) we have

//B(UO(?J) —u(t,x)) 5,5, (t, 2,0,y) dx dy dt
IIr R4
s [ [ 305,00 = utt, )05, dyds o

It It

—|—///a(y,v(s,y))ﬁ'(v(s,y)—u(t,a:))%,(;o dy dW (s) dz dt

IIr 0 R4

+%///02@’”(8’”)5”(”(3’?4)_“(t@))%,éo(tw;&y)dydsdxdt

IIr 0 R4

+ / / FP (v(s,y), u(t, ) Vys,s, dz dtdyds >0 (3.2)
It It
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Adding the two inequalities (3.1) and (3.2) and using the fact that supp ps, C [—do, 0],
we notice that the terms involving 0;p5, and 0;ps, cancel each other and we are left with

/ / Buo(z) — v(s, 1)) (s, ) pao (—5) 05z — v) dex dy ds

IIT R4

4 / / B(v(s,) — ult, 2))0sth(s, ) pay (t — 8)es(x — ) dy ds du dt
I+ It

b [ P (000 ult,2)) 900,90 s (¢ = s)eno — v) do e dy ds
Iy Ip

b [ [ e 005.) Vaos(o — )05, 0)ps, ¢~ 5) dyds dads
Il It

[ [ 000, 0(0.2) 0500 — 905,005, 1 — 5) dwddy s
It It
T T

—l—O/‘y/L/h(r,s,;v,y)dW(r)] e dy ds

do
+/ / /U(yyv(s,y))ﬂ’(v(say)*u(t,w))d)g,(so(t,w;s,y)dydW(s)dxdt
t R4
%/O/[ B" (v(s,y) — ul(t,z)) ds,s, (t, 55, y) dy ds da di

T
%/0/[ z,ult,x)) 5" (u(t, z) = v(s,y)) 5.6, (t, 5 5, y) d dt dy ds

>0. (3.3)

We now take expectation on both sides and use the property of v(s, y) as a strong entropy
solution to have

E[ [ [ Bt~ 5,065, o3, (s)estr — ) dxdyds}

It R4

+E[ / / B(u(s,y) — ult, 2))sth(5, ) pon (t — )0s(x — 1) dydxdtds}

I Ot

E[ [ [ 7 (050, t.0) 965, s ¢ = )05 ) ey ds]

I+ IIr
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%E[/ /1ﬁ(Mtw%M&y»Vzm@7wwﬁﬁﬁmﬂtSﬁhdyﬁd4

It IIr

+ 8] [ [P0l 0) 9y st = )5, ), ¢ =) ey s

[N

- T
+-F o?(z,u(t,z))B" (u(t,z) — v(s,y)) dss, (t, x; 5,y) dz dt dy ds
I |

+

- T
E ///Uz(y,v(s,y))ﬁ”(v(s,y)fu(t,x))d)&go(t,x;s,y)dydsdxdt

1+ 0 Rd 4

~] [ [ ot utta)oloote ) utt. o)~ olt.) 0650

Il It

DN | =

X ps, (t — s)os(x — y) dy dz dt ds} + A(6,00)
=1 +IQ-‘1-13+I4+I5+IG+I7+]8+A((5,50)
>0 (3.4)

Now, we estimate each of the terms above as dp,0 — 0 and 5 — |-|. We start with I;.

Lemma 3.1.

lim I = E//ﬁ(uo(x) —v0())¥(0,9)0s(x — y) dz dy

6() —0
Rd R4

and

lim ~E / Be (uo(x) —vo(y)) es(x — y)1(0,y) dx dy

(,0)—(0,0
R4 xR4

= E/’uo(a:) — vo(a:)W(O,x) dz.

Rd

Proof. The proof is divided into two steps, and in each step, we will justify the passage
to the corresponding limit.
Step 1: In this step we consider the passage to the limit as o — 0. Let

Au:E//BWM%W@MW@@%@—M%P@M@%

IIT R4
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E / / B(uo() — vo(y)) (0, 1) 05 (x — ) dr dy

=F / /B(UO(:C) —v(s,9)) [¢¥(s,y) — ¥(0,9)] ps,(—s)os(x — y) du dy ds
8 [ [3(ue) = v(6,) - Bluo(e) - vo)]

x Y(0,y)os(x — y)ps, (—s) dr dy ds.

Since support ¢ (s, ) C K, we have

A < H1/)t||ooE//XK ) —v(5,9)) s ps, (—$)0s(x — y) dx dy ds

IIT R4

1810 [ [ 10665) ~ 0o 0 1)est — v)pa, () vy

It R4

< Hd’t”ooH,B’HOOJOE//XK(y)(|uo(x)—v(s,y)|)p50(—s)g(;(a:—y) dzx dyds

IIr R4

181 [ [ 1060) = w0 0,00t ~ w)on, () oy ds

It R4

< H%”OOHB/Hoo%E//XK(Z/)(|UO(~T)—U(S,y)|)p50(—s)g(s(x—y) dx dyds

IIr R4

+HﬂH E//zb()y’vsy—vo |p50 s)dyds

T

< [[Ytlloo ||ﬂ H do l”uo ||L1 (R4) +E//|'U S,y |P50 dyds]

0 K
+||ﬂH E//w0y|vsy—v0 {pao s)dyds

< o 8o o)l s gy + s Bt 9],

+CHB’HOO%7E(/w<o,y)|v<r,y> —m<y>\dy> dr.
0 K
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By Lemma 2.1, limg, .o = 3o E( [ (0,y)|v(r,y) — vo(y)|dy)dr = 0. Therefore,
lims, 0 A1 = 0.

Step 2: In this step, we now establish the second half of the lemma. Note that the
sequence (f3¢)c is a sequence of functions that satisfies |3.(r) — |r|| < Ce for any r € R.
Therefore

’E / Be (uo(x) — vo(y)) os(x — y)v(0,y) dedy — E /|uO(y) —vo(y)| (0, y) dy

R4 xR R4

<F / 1B (0 2) — v0(w)) — Jtao () — vow)] |05 (& — ¥)(0, y) dar dy

LB / o) — vo()] — Juo(w) — vo(w)||es (& — v)(0, y) de dy

Ra xRe
< Const(y)e + E / |uo(x) — uo(y)|es(x — y)v(0,y) d dy

R4 x R4

< Const()e + ||¢||cc E / /|u0(x) —ug(z + 62)|0(2) dz dz.

|2|<1 R4

Note that limsyo [pa [uo(x) — uo(z + 0z)|dz — 0 for all ||z|| < 1, therefore by bounded
convergence theorem we have limsjo E [, <, Jga [uo(x) — uo(x + d2)[o(2) dw dz = 0. This
allows us to pass to the limit (&,d) — (0,0) in the last line and establish the second part
of the claim. O

Lemma 3.2. It follows that
Jim L= E [ [ 5(v(s.) - uls2) 0005, v)ese — v) dy o ds
IIT Rd

and

i B[ [ [ 5e(ete) = s, )05, )l — ) oy s

(,6)—(0,0)
IIr x
:E[/|U<va) _U<5a$)|as¢(5,x) drds|.
Iir

Proof. As before, the proof is divided into two steps and in each of these steps we will
justify the corresponding passage to the limit.
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Step 1: Firstly, we consider the passage to the limit as do — 0. For this, let

Gy = \E / / B(v(s,y) — u(t, 2))Dstb(s, y)psy (t — s)os (@ — y) dy ds dw dt

It It

- F / /ﬂ(v(say) —u(s,2)) 9 (s,y)0s (v — y) dy dz ds
I R4

T

E / / / /B(U(Sv y) - u(ta I))as¢(3a Z/)Péo (t - 5)@6(33 — y) dx dt dy ds

S:(;() Re II1

B /T /T / / B(v(s,y) — uls,2)) Dt (s, y)os(x — y)

s=dp 0 Rd R4

X ps, (t — 8) dy dx dt ds| + O(8)
T
<FE / //W(U(S,y) *u(t,z)) fﬂ(v(s,y) *U(5a$))’|3s¢(s,y)|
s=00 Re IIT

X gs(x —y) ps, (t — s) dx dt dy ds + O(do)

- T
G < C(8)]|0s¥]| E / /|u(s,x) - u(t,w)| ps,(t —s)dxdtds| + O(do)
=s=d0 Il
- 1T
< C(B) |10s¢]| o E lu(t + Sor, z) — u(t, )| pr(—r) dz dt dr | + O(Sp).
L1

(3.5)

Note that, limg, o fOT Jga lu(t + dor,z) — u(t,z)| dedt — 0 almost surely for all r €
[0,1]. Therefore, by bounded convergence theorem, lims, o E[fOT f:zo Jga lu(t +dor, x) —
u(t, z)| p1(—r) dz drdt] = 0, and therefore the first step follows.

Step 2: In this step, we establish the second part of the lemma. For this, let

Gale, ) = ]E [ [ 3066, s, 0)ut5.) a5t~ ) oy s

I R4

—FE / /’v(s, y) — u(s,x)’@slb(s, y) os(x — y)dx dy ds

IIT R4
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T
<ot [ [ 15000~ ulsi) = folsi) — uls.)|
supp(¢(s,y)) RE 0

x os(x — y)dsdx dy.
As before, note that the sequence (). is a sequence of functions that satisfies
|B-(r) = |r|| < Ce for any r € R,
we have
Ga(e,0) < (|05l € C (4, T). (3.6)

Once again, let

G3(0) =

B / / (s, ) — u(s, 2)]0s(s,9) 05 (z — y) do dy ds
IIT R4
T

—E//|v(s7y) — u(s,y)|0s¥(s,y) dy ds

0 Rd

<FE / /’u(&y) —u(s,x)|0s0(s,y) os(x — y) dvdyds - 0 asd — 0
Il R4

(as in Lemma 3.1).

Now

‘E [ [ [ 50005~ uts. )0t p)asta - ) o dy ds]

I+ x

- E[ / [v(s,z) — u(s,2)|0s1(s, x) da ds}
I
< Ga(e,0) + G3(0) < 1059 C (1), T)e + G3(d) — 0 as (e,5) — (0,0).
Hence the second part follows. O
Next we estimate the limit of I3 as §o — 0 and (¢, d) | (0,0).

Lemma 3.3.

lim I3 = E/ / F? (v(s,y),u(s,x)) V¥ (s,y) os(x —y) dy dsdz

60—)0
R4 IIT
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and

li E FBe _
Ll B[P (uls0), 0l 0) V0, p)os(e — ) de dy ds

I R4

d
/ ZSign(u(Svy) - U(Svy)) (Fk (u(87y)) - Fk (v(s,y)))ﬁykd)(s,y) dy ds|.
k=1

Proof. The proof is divided into two steps.
Step 1: We first verify the passage to the limit as §o — 0. Note that there exists p € N
such that, for all a, b, c € R,

|FP(a,b) — FP(a,c)| < K[b—c|[(1+[b]" +[c[”).

Therefore, upon denoting

By = ‘E / / F? (v(s,y), u(t,x))vyilz(s,y)p(go (t —s)os(x —y)dydsdxdt

It It

—E//F’B(v(s,y),u(s,x)) V(s y) os(x — y) dy ds dz|,

R IIT

we have

T
E / / / A (v(s,y), u(t, ) Vyb(s,y)ps, (t — s)os(x — y) du dt dy ds

s=00 R Il

Bi <

B /T / /T [ 7 (s, us,2) V05, )es(e = g, (¢ = ) o dedy ds

s=0g R4 t=0 Rd

+ O(do)

<KHV7!1/sz ///|usx—utw’(1—|—‘ sm‘ +|utx‘)

s=§pg R4 t=
X pso(t — s) dt dz ds + O(do)

(by Cauchy—Schwartz inequality)

§C’||Vy1/)(s,y)|| E / //|u s,x) —ult,x ‘ Ps,(t — s)dtdx ds +(9((50)
- s=0g R4 t=
SCHVyw(s,y)H E///’ut—i—éorx — uf(t, l‘)’ p(=r)dtdxdr| + O(d).

- r=0Rdt=
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Note that, lims, o fOT Jga lu(t + dor, z) — u(t,)|* dzdt — 0 almost surely for all r €
[0,1]. Therefore, by bounded convergence theorem, lims,, o E[frlzo fOT Jga lu(t +dor, x) —
u(t, z)|? p(—=r) dz dt dr] = 0, and therefore the first step follows.

Step 2: In this step we establish the second part of the lemma. Note that F}(s) has at
most polynomial growth in s € R. It follows from direct computation that there exists
p € N such that for all u,v € R and g = .,

|F£E(U,u) — sign(u — v)(Fk(u) — Fk(v))| < ECp(l + |ul” + |v|p). (3.7)

Therefore

|El/ / FBe (v(s,),u(s,2)) Vyi(s,y) 0s(x — y) dy ds dzx
Rd IIr
d
+// sign(u(s,x) *U(S,y))(Fk(u(s,;z:))
Rd [Ty k=1

— Fi(v(s,9))) 0y 0 (s,9) 05(x — y) dy ds dw]

d
< 8| [ [ S2IE (05,00 u(s,) — sign(us, ) — o6, 0) (Fifuts, )

Rd ITp k=1

— Fi(v(s,9)))| |0y, (s, )| 0s(x — y) dy ds dx]

< Const(1)) e {1 + sup Elv(s)||” + sup EHu(s)Hp} -0 ase—0. (3.8)
0<s<T P o<s<T p

Since v is smooth test function and Fj’s are smooth and have polynomially growing
derivatives, it is easy to verify that F'(u,v) = sign(u—v)(F(u) — F(v)) is locally Lipschitz
and

|F(u,v) — F(@,v)| < Clu—al(1+ |uf” + |al?).

Therefore, we can employ dominated convergence theorem and conclude

d
E / Z sign(u(s,z) — v(s,y)) (Fi (u(s, z))

T re *=1

— Fy(v(s,9))) 0y, ¥ (s,y)0s (x — y)dz dy ds
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d
/ > sign(u(s,y) — o(s,)) (Fr(u(s,9)) — Fr(v(5,9))) 0y 00 (s, y) dy d%
k=1

= 0(9).

Therefore

E / / FP (0(s, ), u(s, 7)) Vyi(s,9)05(x — ) dardy ds

I R4

/ZSIgn u(s,y) — (s, ))(Fk(u(s,y))—Fk(v(s,y)))ﬁym(s,y)dyds]

< Const(yp)e + O(0) — 0 as (g,d) — (0,0). a
Lemma 3.4. It holds that

li 1 I I .
co i s o il + 1) = 0. (3.9)

Proof. We can use the same reasoning as before and pass to the limit §p | 0 and conclude
lim (14 + I
601210( 4+ 15)

Bl [ 45 (s ),0060) Futslo =) + PP (uGs, ) s 0)
R4 I
x Vyo5(x —y }w S,y dydsdx}
—E[//{Fﬁ(u(s,x),v(s,y)) + FP(v(s,y), u(s,z)) }

R4 I

x Vyos(r —y)¥(s,y) dy ds dz] .
Note that, there exists p € N, such that for all a,b € R

|F{*(a,b) — = (b,a)|
< |F*(a,b) — sign(a — b) (Fy(a) — Fi(b))| + | Y= (b, a) — sign(b — a) (Fr(b) — Fi(a))|

< Ce(1+al” + |bP).
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Therefore,

‘E[/ /{Fﬂ (u(s,2), 0(s,)) — F? (0(s,9), u(s,2)) } Vo5 (& — )ib(s, ) dy ds dm}

R IIT

< €CE|:/ /(1 + u(s, 2)|” + [v(s,9)[") | Vyos(z — ) [¥(s,y) dydsdx]

Rd It

™

< <00 when ( %5) — (0,0,0).

(o9

Hence the lemma follows. O

Lemma 3.5. The following hold:

lim Ig = —E / /02 (z,u(s,2))B" (u(s,z) — v(s,y))¥(s,y)os(x — y) dz dy ds

(50*}0
IIr R4
(3.10)

and

lim I; = —E // (y,v(s,9))B" (v(s,y) — u(s,2))¥(s,y)0s(x — y) dx dy ds.

do—0
It R4

(3.11)

Proof. We will rigorously establish (3.10) and (3.11). Note that

= fE / (2, u(t, 2)) 8" (u(t,z) — v(s,y))¥(s,y)ps, (t — 5)0s(z — y) da dy ds dt.

HTXHT

Therefore,

Is — %E / /02 (z,u(t, )" (ult,z) — v(t,y))(t,y)os(x — y) de dy dt

IIr R4
= |l — 1E /T /T / 02(ac u(t x))ﬁ"(u(t x) —v(t y))w(t Y)
6 9 ST ; ; ) ’ ’

X ps,(t — s)os(z —y) de dy dt ds| + O(do)

I/\
L‘q\'ﬂ

T
/ / o2 (, u(t, 2))|8" (ult, ) — vt ) — B” (ult, ) — v(s,))|
t=0Rd x R4
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X (s, y)ps, (t — 8)os(x —y) dx dy dt ds

/ / / (, u(t,2)) 8" (u(t,x) — v(t.y)) [ (t,y) = (s, y)]

s=0p t=0 R4 xRd
X oo (t — s)os(x — y) dw dy dt ds + O(do)

<le |

s=dp t=

o? (z,u(t,x))|v(s,y) — v(t,y) | (s,y)
0 R4 xR4

X sy (t — 8)os(x — ) dar dy dt ds + O(5)

T T

<comst(GE [ [ [ @1+ ut.o)f)fots,) - olt.n)

sS=

8 t=0Rd xRd

X (s,y)ps, (t = 5)0s(x — y) dw dy dt ds + O(do)
(by Cauchy—Schwartz)

< Const(S3,7)

T T

< e[ ]

g4(x)(1 + |u(t, :1:)}4)1/1(5, Y)ps, (t — $)os(x — y) de dy dt ds

s=8p t=0 Rd x R4

X_E//

< Const(S,n, 1))

< Const(83,n, 1)

/ 0(5,5) — v(t,9) 205, 9)pso (t — )05 (z — y) da dy dt ds + O(8)

s=08p t=0Rd xRd

T T
B[ [ [l - o)los (e~ s) dydrds + 0
s=08g t=0 Rd

E///|vtm —v(t+rdo, x |p ) dx dt dr + O(dy).

Once again we use the fact that lims, o fOT Jga [u(t + dor,2) — u(t,x)*dzdt — 0.

Therefore, by dominated convergence theorem, Efrlzo ftT:O Jga l0(t,y) — v(t + 7o, )| -
p(—r)dydtdr — 0 as 69 — 0. The proof of (3.11) is similar. O

Lemma 3.6. It holds that

lim Ig =
60—0

& [ [o@utt.0)

It R4

x o (y,v(t,y))B" (u(t,z) —v(t,y)) vt y)es(x —y) dydedt.  (3.12)
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Proof. Recall that

IgZ—E/ /a(m,u(t,x))a(ym(t,y))

It IIT

x B (ult,) — v(t, ) (s, y)ps, (t — $)es(x — y) dy de dt ds.

Therefore, as before,

L+ E / / o (w,ult, ) (4, 0(t, ) B (ult, 2) — v(t, ) )(t,y)os(w — ) dy dar dt

I R4

T
<B [ [ [loutto)e(oot0)|5 wr.m) — vt ots.0) - vie.0)

s=00 T R4
X ps, (t — s)os(z — y) dy dz dt ds + O(dp)

S(Sollaltw”mHB//HOOE//‘a(zzs,u(t,:13))0(3/,1}(15,3/))|Q(;($c—y)clydﬂcalt—1—0(50)

7 Ra
< 50||8t¢||oo’|5”||000<1 + sup EHu(t, )H2 + SU.p EH H ) + O(dp).
0<t<T 0<
Hence the lemma follows by simply letting dg J 0 in the last line. O
Lemma 3.7. Assume that e — 07, § — 07 and e7162 — 0T, then

lim sup lim (Ig + I7 + Ig) =0

e—0+,6—0+,e-162—0+ 50—0

Proof. Since 3" is even function, we have from Lemma 3.5 and Lemma 3.6 that

lim (I + I7 + Ig)
60*}0

= %E{//(a(m,u(s,x))

It R4
2
—o(y.v(s,9))) 8" (uls, z) — v(s,y))¥(s,y)0s(z — y) dv dy ds
Now, by our assumption on o, we have

(o(z,u(s,z)) — o (y,v(s, y)))zﬁ” (u(s,z) —v(s,y))
< O(Jz — yl? + |uls,2) — v(s,)|") 8" (u(s, ) — v(s,y))

2
<c<s+@)
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Therefore,

E[ | [ (o uts.o) = ol o(s,)5" (w(s,2) = o(5,0)) (5. 9) es(a ~ ) dody s

(0,7 %y

< Ci(e+e7 16T,
and letting ¢ — 0%, § — 07 and 7162 — 0T gets us to the desired conclusion. O

Theorem 3.8. Assume (A.1)—(A.3). Suppose u is a stochastic entropy solution of (1.1)
and v is a stochastic strong entropy solution of the same equation. Then

E[[|(u(t) —o@)]l,] < B[] (w(0) = (@) ]
for almost every t > 0.

Proof. First we pass to the limit dg | 0 in (3.4) and then let § = 3 and finally let € | 0.
We use Lemmas 3.1-3.7 along with the preceding inequality (3.4) and obtain

E{/|uo(x) — vo(a:)W(O,x) dx] +FE {/ }v(t,x) — uf(t, a:)}atlb(t,a:) dt dx
R4 IIr

+E[/F(u(t,x),v(t,x)).vxw(t,x) dtdw} >0 (3.13)

I

For each n € N, define

1, if |z| <n
On(x) = 2(1—%), ifn<|z|<2n
0, if |z| > 2n.
For each h > 0 and fixed ¢t > 0, define
1, if s <t
Yp(s) =S 11—t ift<s<t+h
0, if s >t+h.

By standard approximation, truncation and mollification argument, (3.13) holds with

P(s,x) = Ppn(x)n(s). Define

A(s) = E{/|u(s,x) —v(s,z)| dz|,

Rd
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then A € L ([0,00)). It is trivial to check that any right Lebesgue point of A(t) is also
a right Lebesgue point of

An(s) = B| [ dn(@)uls,z) — (s, )| da
/ |

for all n. Let t be a right Lebesgue point of A. We choose this ¢ in the definition of ¢y, (s).
Thus, from (3.13) we have

t+h
% / E{/|v(s,x) — u(s, x)|¢n(x) dx] ds
t Rd
<E { / F(u(s,z),v(s,2)).Vadn(x) Pp(s) ds dm}
It

VB {/’uo(m) ~ vo(@)|én(®) dx} .

Rd

Taking limit as h — 0, we obtain

J
<E //tF(u(s,:r),v(s,x)).vx¢n(x)dsd:c}
+E[/yuo(m> ~ w0(@)|¢n(@) dx}

Rd

1
< C(T)E {1 + 02u<pTEHu(S)HZ + OEUETEHU(S)Hﬂ

+ E[/|uo(x) — vo() | ¢ () dx} (3.14)
Rd

Letting n — oo, we have from (3.14)

E[f|(u®) —o®)|,] < B[] (w(0) =vO)},].  ©

Theorem 3.9 (Comparison principle). Assume (A.1)—(A.3). Suppose u is a stochastic

entropy solution of (1.1) and v is a stochastic strong entropy solution. Then for almost
every t > 0,
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Eff[(u(t) = v@®) ] < E[||((0) = v(@)) ,]-

Consequently, if v(0,2) < u(0,z) a.e. in x holds almost surely, and that El||(u(0,.) —
v(0,.))+|l1] < oo, then almost surely v(t, z) < u(t,z) a.e. in x, and almost every t > 0.

Proof. The proof is exactly the same as that of Theorem 3.8, if we choose (B¢(r)). to be
a smooth convex approximation of 4 = max(0,7). O

Proof of Theorem 2.2. It is given that u is a stochastic entropy solution of (1.1) and v
is a stochastic strong entropy solution and ﬂp:1 5, LP(R%)-valued random variable ug
satisfies

Effluoll} + lluoll5] < o0, p=1,2,...

Therefore by Theorem 3.8, as u(0) = v(0) almost surely, we have u(t) = v(t) for almost
every t. Hence the uniqueness is proved. 0O

4. Vanishing viscosity and existence of entropy solutions

In this section, we detail the mechanism of proving existence of entropic solution.
Just as the deterministic problem, here also we apply vanishing viscosity method. We
must mention that a number of recent studies, including Feng and Nualart [8], use
this approach to establish existence for conservation laws driven by noise. However, this
method requires rigorous wellposedness results along with a few crucial a priori estimates
for the viscous problem which allows one to apply stochastic compensated compactness
and get the existence. It is to be mentioned also that we need to exercise outmost
caution while extracting an inviscid limit out of the vanishing viscosity approximations.
The apparent inconsistencies, which are the motivations for this paper, in [8] are largely
due to the inadequacies in handling the limiting procedure.

It must be admitted here that, in [8], the authors offer a rigorous and flawless study
of the wellposedness question of viscous problem along with necessary a priori estimates.
In the first part of this section we state the relevant results without proof.

4.1. Viscous approximation

Let J € C2°(R) be the one dimensional mollifier and ¢ € C°(R) be a cut-off function
satisfying

()_{O for |r| > 2
1 for |r| < 1.

For € > 0, define the approximates F.(r) and o.(x,u) as
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Fe(r) = o(elr?) F(r) + Je(r)

d
oe(z,u) =y/v/<kl:[1Je(xk —yk)Je(u—v)><p(€(ly|2+ [v[)) o (y, v) dv dy,

and introduce the viscous perturbation of (1.1):

due(t, ) + divy F. (us(t,2)) dt
= 0. (z,u:(t,2))dW (t) + eAgpuc(t,2)dt ¢ >0, x € RY, (4.1)

with the regularized initial condition
d
u:(0,z) = /( I 7@ — yk)uo(y)@(€|y|2)>dy- (4.2)
y \k=1
It follows from direct computation that

|Fe(r) — F(r)] < Ce(1 + r[??°)  for some py € N
loe(z,u) — o(z,u)| < Ceg(x) (1 + |ul). (4.3)

As expected, the perturbation (4.1) is uniquely solvable and has smooth solution. We
have the following proposition, a proof of which could be found in [8].

Proposition 4.1. Let (A.1)-(A.3) hold and € > 0 be a positive number. Then there is a

unique C%(RY)-valued predictable process u.(t,-) which solves the initial value problem
(4.1)—(4.2). Moreover,

1) For positive integers p = 2,3,4, ...

sup sup EH|us(t,~)||§] < 400 (4.4)
e>0 0<t<T

2) For ¢ € C*(R) with ¢,¢',¢" having at most polynomial growth

T P
supEl5//(/5”(%(1?,3@))|V$u€(t,x)’2dﬂcdt ] < 00,
e>0 5 e

Our solution method relies upon being able to extract a convergent subsequence out
of the family {u.}c>0 in an appropriate sense. However, it is needless to mention that
the above moment estimates (4.4) and (4.5) are not enough to ensure compactness of
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the family {u.(¢,z)} in the classical LP sense. Moreover, our main emphasis is to avoid
“strong in time” framework of Feng and Nualart at any cost and we do not find it appro-
priate to treat the family {uc}.>0 as measure valued processes and look for convergence
in the space of measure valued processes. This prompts us to follow [2] and consider
the family {uc}es0 as a family of Young measures parametrized by (w;t, z) and look for
tightness to enable us to extract a convergence subsequence. We need to recall some of
the basic features and facts about the Young measure, which is done below.

4.2. Some basic facts about Young measures

Roughly speaking a Young measure is a parametrized family of probability measures
where the parameters are drawn from a o-finite measure space. It’s definition requires a
o-finite measure space (@, X, u) and we denote by P(R) the space of probability measures
on R.

Definition 4.1 (Young measure). A Young measure from © into R is a map v — P(R)
such that v() : 0 — v(0)(B) is X-measurable for every Borel subset B of R. The set of
all Young measures from © into R is denoted by R(O, X, 1) or simply by R.

Remark. Trivially, if u(6) is a real valued measurable function on (6, X, ) then v(0) =
0(€£ —u(6h)) defines a Young measure on ©. In other words, with an appropriate choice of
(0,2, 1), the family {uc(t,z)}e>0 can be thought of as a family of Young measures and
we are interested in finding a subsequence out of this family that ‘converges’ to a Young
measure as € goes to 0. This obviously calls for clarification of the term convergence in
this context. It turns out that the notion of “narrow convergence” of Young measures is
the most suitable to our context.

Definition 4.2 (Narrow convergence). A sequence of Young measures v, in R is said to
converge narrowly to v iff for every A € X and h € Cy(R)

nan;O { / B (€) v (0 (df)] (df) / [ / h(e } 1(d6).

Next, we specify the tightness criterion for Young measures.

Definition 4.3 (Tightness). A family of Young measures {v, },, in R is called tight if there
exists an inf-compact integrand h on © x R such that

o [ [ / hw,g)un(e)(da)] (d0) < oo
[C] R

Remark. Without getting into much details on the entire class of inf-compact functions,
it is enough for us to know that h(6,£) = £2 is one such example. With this choice of h
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and an appropriate choice of (0, X, 1), by (4.4) the family {u.(¢t,z)}c>0 is tight when
viewed as family of Young measures.

The tightness condition enables us to extract a subsequence from a tight family and
we have the following version of Prohorov’s theorem to this end, a detailed proof which
could be found in [1].

Theorem 4.2. (1) [Prohorov’s theorem] Let (0, X, i) be a finite measure space and {vy}n
be a tight family of Young measures in R. Then there exists a subsequence {vyn'} of {vn}n
and v € R such that {v,'} converges narrowly to v.

(2) Moreover, with v,, = s, (9)(&) and given a Caratheodory function h(6,§) on © xR,
if h(0, fnr(9)) is uniformly integrable then

n’—oo

e © R

i [ 10 fu@)utad) = [| [ 10.000)d6) | utan)

4.8. The inviscid Young measure limit of {uc(t,x)}es0

Let Pr be the predictable o-field on £2x (0, T') with respect to the filtration {F; bo<i<7.
Furthermore, we set

0 =02x(0,T) x R?, 2=PrxL(RY) and pu=Pa N\,

where )\; and )\, are respectively the Lebesgue measures on (0,7) and R?, and £(R?) be
the Lebesgue o-algebra on R%. Note that the family {uc(t,z)}eso could be viewed as a
tight family in R(©, X, u), but (6, X, 1) is not a finite measure space. Hence Theorem 4.2
cannot be readily applied to {u.(t,z)}es0. We follow [2] and get this problem with the
following considerations.

For any natural number M, let

Onm = 2% (0,T) X B, Yy =Prx L(By) and  pn = ploy,,

where By is the ball of radius M around zero in R? and £(B)y) is the Lebesgue o-algebra
on Byy. Tt is easily seen that (O, X, piar) is a finite measure space and {ue(w;t, ) }eso
(when restricted to @)y) is a tight family of Young measures in R(@nr, Xar, piar). There-
fore by Theorem 4.2, there exists subsequence ¢,, — 0 and v™ € R(Oy, Zar, par) such
that {u., (w;t,z)} converges narrowly to v*.

In addition, for M > M, the sequence {u. (w;t,z)} is tight in R(O, Xy fhir)s
and hence admits a further subsequence, say {u. , (w;t,z)}, and vM e RO, Xigs thgir)
such that {u. ,(w;t,x)} converges narrowly to vM . We now invoke diagonalization and
conclude that there exists a subsequence {u. ,(w;t,z)} with ¢, — 0 and Young measures

vM € R(On, Sar, ), M = 1,2, 3, ... such that {u., (w;t,z)} converges narrowly to v
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in R(Onr, Xary piar) for every M = 1,2, ... In view of Theorem 4.2, it is easily concluded
that

if M > M then v™ =M jrae. on (Onr, Dar, ).
Now define
V(wit,z) = V(]\o{;t,z) if (OJ; t,x) € Oy (46)

Clearly, v is well defined as a Young measure in R(O, X, 1). This reasoning could now
be summarized into the following lemma.

Lemma 4.3. Let {u.(t,z)}e>0 be a sequence of LP(R%)-valued predictable processes such
that (4.4) holds. Then there exist a subsequence {e,} with £, — 0 and a Young measure
v € R(O, X, u) such that the following holds:

If h(9,€) is a Caratheodory function on © x R such that supp(h) C Opr X R for some
M e N and {h(0,u., (0)}n (where 0 = (w;t,x)) is uniformly integrable, then

lim [ A (6, e, (0))u(d0) = / [ / h(e,g)u(e)(dg)} 1(d6).

en—0
e R

Proof. The extraction of subsequence is done as described above and v is defined in
(4.6). Note that if M € N such that supp(h) C Oy x R, then

[ 0., @) td6) = [ 1(6,0e,(0))as(d0) and
e

Onm

/ { h(e,@u(e)(ds)}u(de): / { [ 106 0)(d8) | as(ao),

© R On R

and the convergence simply follows from Theorem 4.2. O

To this end, we intend to show that the Young measure v(0)(du) has a point mass,
i.e. there is a (0, X, u)-measurable function @ such that for any Caratheodory function
h(0,€) on © x R

/ [/ h(e’f)”“’)(d@]“(d@) = / h(0.a(6)) u(d6)
e R pA

whenever the integrals make sense. In other words, upon writing 6 = (w; ¢, ) we want
to find out a Pr x L£(RY) measurable function u(w;t,z) such that

E{/[/h(w;t,x,f)y(w;t,x)(df)] dtda:] :E[/h(w;t,x,a(w;t,x))dtdx . (4.7)

T R IIr
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Equivalently, all that is required to be established is that v(0)(df) = 6d5(9)(§) d§ for
p-almost every 6 € ©. This is a fairly subtle point and we use idea of stochastlc com-
pensated compactness from [8] to validate this for d = 1.

4.4. Stochastic compensated compactness

For a continuous and polynomially growing function f: R — R, define

flw;t, ) /f v(w;t, x)(dE).

Then f(w;t,z) is Pr x L(R?) measurable and, by (4.4), f € LP(©, X, ). We further
denote

w(w;t,x) = /§u(w;t,x)(d§).
3

Lemma 4.4. It holds that

sup E/}ﬂ(w;t,xﬂp dr < oo
0<t<T

for p = 2,3,4,..., and hence (w,t) + u(w;t,x) is a Pp-measurable and L?(R?)-valued
process.

Proof. Let g be a Lebesgue measurable function on (0,7T) and g € L*((0,7T)). Then, for
every M € N, by Lemma 4.3,

/ E/\ wtx|dxdt<E//[/g |§|pywtm)(d£)]d:cdt

0 B
= lim E//g (t |:/|£|p5ue (wtx)(dg):| da dt
€n—0 A
0 Bu
:hmE// ’uentx|da:dt
€n—0
0 By
< llglz2 o7 sup SUPTE[HUe M-

Note that the last line is independent of M, therefore by letting M to infinity in the first
expression we have
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T
/g(t)E/| (wit, x | dzdt < ||gllL1 (o, T))sup Sup E[Hu6 || ]
0 Rd

for all g € L*((0,T)), which implies that El|u(t,-)||2 € L>((0,T)). O
Next we state the main result of this subsection.

Lemma 4.5. Assume that d =1 and (A.1)—(A.3) hold. Then it holds that

F(@@)n(a) = | [ F©vo)a)]uas) (48)

£eR

In addition, if (A.4) holds, then
(0) (duw)(d0) = b9y () (). (49)

Remark. If we expand our notation and write § = (w;t, ), then (4.8) simply means that
for any Y-measurable function h((w;t,x)) on O, it holds that

//{/ (wit, z))F(&v(w;t,z)(d) | dodt dP(w)

0 Iy

=F / h((wst, @) F(a(w;t, z)) dz dt,

It

provided the integrals make sense. Similarly, (4.9) means that for any given Caratheodory
function h((w;t,x),€) on © x R, one has

//{/ (w;t,x §)V(W;t,x)(d§)} dxdtdP(w)=E / h((w;t,x),a(w;t,x)) d dt.

(9] HT HT

The proof of Lemma 4.5 requires the application of a stochastic version of div—curl
lemma, and [8, Theorem A.2] is such a version. Let us also mention that we find the
proof of [8, Theorem A.2] to be absolutely flawless and will be using it here too. The
next lemma is an important technical step to prove Lemma 4.5.

Lemma 4.6. Let (P;,¥;),i = 1,2 be two choices of entropy flux pairs, where @;’s have at

most polynomial growth (therefore W; will have at most polynomial growth as well). For
every deterministic ¢ € C°(Ilr),

(0, 0By — 1) 2 (3, Uy - By — By - T) (4.10)
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Proof. Let ¢ € C°(IIt) and B € Fp. Define

&@y:/wwmau%@@pg%@@)

It

— &1 (ue(t, )W (us(t,2))) da dt. (4.11)

Note that, by martingale representation theorem, there exists a continuous martingale
Z such that Z7 = 1g. Then

lim B [1p(w)Xe, (w)]

En

= Enh_I}I(lﬁ_ E[E[1p(w)|F]¢(t, z) (¥ (ue, (t, 7)) D2 (ue, (t, 7))
IIr
— &1 (ue, (t,2)) P2 (ue, (t,x)))] dzdt
= En]ii%+ E[Zy(t,x) (¥ (ue, (t, 2)) P2 (ue, (t, 7))
I
— @1 (ue, (t,2)) W2 (ue, (t,x)))] dodt

(by Lemma 4.3)

-/ E[ztw,x) ( [ @ - ¢1<u>%<u>)v<wam)(du))] da dt

= / / 1p(w)Y(t, x) (/(Wl(u)sﬁg(u) - @1(U)L172(u))y(w;t,m)(du)> dx dt dP(w)
2 Ilr u
://mwwm@@@@—ﬁﬁwmmmmw

15(w)X (w) dP(w) (4.12)

where X (w) = (¢, U1®9 — &1Ws)(w). This implies that X., > X and hence X, B x.
In other words

lim U(t, @) (V1 (ue, (t, ) P2 (ue, (t, ) — D1 (ue, (t, 7)) Vo (ue,, (t, x))) du dt

£n,—0T
It

D J— —_
= (Y, 1Py — P1¥s).
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Let Ge(t,x) = (P1(ue(t, ), 1 (ue(t, x))) and He(t,x) = (—Pa(uc(t, x)), Pa(ue(t, z))).
By the moment estimate (4.4), we see that the families {G. }.>0 and { H. }.~¢ are stochas-
tically bounded as L?(II7;R?)-valued random variables.

We now call upon [8, Lemma 4.18] and claim that {8;D! + 0,%! },, where &, =
Di(us(-,-)) and ¥! = WU(u.(-,-)) and i = 1,2; are tight sequences as H~1(II1)-valued
random variables. This means both {V - G, }, and {V x H, }, are tight as sequences
of H=Y(IIr)-valued random variables. In view of Lemma 4.3, we see that condition (2)
of the div—curl lemma [8, Theorem A.2] holds. Therefore, one can apply the div—curl
lemma and have

Enli_r}g)+ V(t, ) (P (ue, (t,2)) P2 (ue,, (t,2)) — Py (ue, (¢, 7)) P2 (ue, (¢, 2))) do dt
IIr

D —_ _—
= (Y, ¥. Py — P1.05).
Thus, for every deterministic ¢ € C2°(Ilr),
— — D [ — [
(¢,W1432 — @1W2> = <’¢,q/1.€132 — @1.@2>. O
Proof of Lemma 4.4. Let ¢ € C°(IIr) be nonnegative deterministic test function.

Choose @1(u) = u and ¥(u) = F(u) = ¥ (u). Then Wy(u) = [;'(F'(r))*dr. Now ap-
ply Lemma 4.6 and arrive at

Note that, by Schwartz inequality, for any u € R
(F(w) ~ F(u(0)))” = ( [ o dv) < (u—(6) (Valu) — 2(a(9))).  (4.14)
a(0)
Integrating the inequality (4.14) against v(0)( du), we have
F2(0) — 2F(0)F(a(9)) + (F(ﬂ(@)))2 < uly(0) — u(0). ¥ (0). (4.15)

We now multiply (4.15) by ¢(¢,z) and integrate against u(df) (i.e. dxdtdP(w)) and
obtain

[ we.0Bl(F - P@)) drda
Iir

< / Y(t,2)E[(wlh — uWy) — (F? — (F)?)]dtdz =0 by (4.13).
It
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In other words
/ W(t,2)E[(F — F())*] dt de =0, (4.16)
Iir

which implies

/1/) (t,2)F(w;t,z) de dt = /1/) (t,2)F (u(w;t,x)) dedt almost surely. (4.17)

In view of (4.17) and (4.13), one has

/wtac {/( (u)—F(ﬂ(w;t,x)))zu(w;mx)(du) dt dx
- /w(t,x)E[ﬁ— (F)?] dt du
_ /w(t,x)E[(@—ﬂ.@)] dt dz

= /’(/}(t,.T)E|: / ((u—a(w;t,z)) (Pa(u) — Yo (u(w;t, x))))v(w;t, z)(du) | dt dz.

u€eR

We now invoke (4.14) and arbitrariness of 1 to conclude that for p-almost all § € © and
every u € support(v(6)), we must have

(F(u) = F(a(0)))* = (u—a(0)) (¥a(u) — ¥ (a(0))). (4.18)

To this end we recall the condition for equality in Schwartz inequality and conclude that
(4.18) is possible only if F’ is constant between u and @(#). This is an impossibility if
u is different from @(#), thanks to (A.4). Therefore v(0) is a probability measure on R
which is supported at the point u() for u-almost every 6 € ©. In other words, (4.9)
holds. O

4.5. Existence of entropy solution

In view of the results and analysis above, it is now routine to show that u(w;t, )
satisfies the stochastic entropy condition. From here onwards, will simply drop w and
write 4(t,x) in place of u(w;t,z). We begin by fixing a nonnegative test function ¢ €
C°([0,00) x R), B € Fr and convex entropy pair (5, ().

Assume that (. be the entropy flux with flux function F, which would approximate (.
Now apply Itd’s formula on (4.1) followed by Ité product rule (as in (2.2)) and then
multiply by ¢ (¢, )15 and integrate to obtain
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O<E{13/ﬂ z)) (0, a:)dx} 5E[13/[3 ue, (t,2)) Vue, (t,z) - V(L :c)dxdt}

+ E{lB / (B (ue, (1, 2)) b (t, ) + o, (uc(t, 2)) - Vbt 2)) dt dx}

IIr

+ E{IB / e, (T, ue, (t,2)) B (ue, (t,2))0(t, z) dx dW(t)}

I

+ %E[lB / 02 (z,ue, (t,2))B" (ue, (t,2))¥(t, z) dx dt] (4.19)

It
With the help of uniform moment estimates and (4.3); (4.19) gives

0< E[lB/ﬂ z))(0, ) dx} EE[IB/B ue, (t,2))Vue, (t, ) - Vi (t, x) da:dt}

It

+FE {13 / (B(ue, (t,2)0(t, ) + ((ue, (t,2)) - Vip(t,x)) dt d:c]

IIr

+F {13 / o(z,ue, (t,2))B (ue, (t,2))(t, ) do dW(t)}

I

4 %E [13 / o2 (x’ ue (¢, x))ﬂ” (uEn (t, x))w(t, x) dx dt] + O(ep) (4.20)

It

All that is left now is to justify passage to the limit €, — 0 in (4.20). In view of the
estimate (4.5), it holds that

lim0 enl {13 / B (ue, (t,2))Vue, (t,2) - VY (t, ) dz dt} =0. (4.21)
En—

I
Furthermore, it follows from straightforward computation that

alnigoE[lB/ﬁ ¥(0, ) dx] = [13/[3 uo(x)) (0, x)dm} (4.22)

Note that 15(w) may not be Y-measurable, but we can adapt the technique as in the
derivation of (4.12) in the proof of Lemma 4.6 and apply Lemmas 4.3 and 4.5 to have
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lim {13 / (B(ue, (t,2))0p(t, x) + C(ue, (¢, 2)) - VY(t,2)) dt d:c]

en—0
IIr

= E[lB /(ﬁ(ﬂ(t,m))atw(t,x) + ¢ (ult,x)) - Vip(t,x)) dt da:] (4.23)

It

and

lim 1E{1B/aQ(a:,uan(t,x))ﬁ”(ugn(t,x))z/}(t,a:) dxdt}

en—0 2
IIr
— %E[lg/02(53,u(t,x))ﬂ”(u(t,x))i/}(t,x) dacdt]. (4.24)

Now passage to the limit in the martingale term requires some additional reasoning. Let
I'=02x]0,T),G =Prand ¢ = P® ;. The space L*((I',G,s); R) represents the space of
square integrable predictable integrands for Itd integrals with respect to W (t). Moreover,
by It6 isometry and martingale representation theorem, it follows that It6 integral defines
isometry between two Hilbert spaces L2((I',G,<); R) and L%((£2, Fr); R). In other words,
if Z denotes the It6 integral operator and {X,}, be sequence in L?((I,G,¢);R) weakly
converging to X; then Z(X,,) will converge weakly to Z(X) in L2((£2, Fr); R).

We again apply Lemmas 4.3 and 4.5 and conclude that for any h(t) € L2((I,G,5); R)

Hence, if we denote X, = [;o(z,uc,(t,2))p (ue,(t,x))(t,x)dz and X =
Jro(z, a(t, ) (a(t, z))h(t)¥(t, x) dz, then X, converges weakly to X in L?((I',G,<); R).
Therefore Z(X,,) will converge weakly to Z(X) in L?((£2, Fr);R). In other words, the
following lemma holds.

Lemma 4.7. For every B € Fr
/T
0

T
:Ellgo/R/U(m,a(t,x))ﬁ’(ﬂ(t,x))w(t,x) dxdW(t)]

hm FE

En—>

/ e, (t,2)) B (ue, (t,2))(t, x) da dW (¢ )]

R



2236 I.H. Biswas, A.K. Majee / Journal of Functional Analysis 267 (2014) 2199-2252

Now simply combine (4.21)—(4.24) along with Lemma 4.7 and pass to the limit &,, | 0
in (4.20) and obtain

0< E[lBR/ﬂ(uo(x))w(O,x) dx} +E{1BH[ B(a(t,x))0(t, x) dtdx}

+E[1B / C(a(t, z)) - Vi(t, z) dtdm}

It

+ %E[IB/UQ(x,a(t,x))B”(a(t,x))z/)(t,x) dxdt}

IIr

+F

T
130/R/a(;mu(t,x))ﬂ’(u(t,x))zb(t,x) dxdW(t)] (4.25)

Finally, we now combine the results above and claim that u(t, z) is a stochastic entropy
solution of (1.1).

Lemma 4.8. The function u(t,x) is an entropy solution of (1.1).

Proof. The predictability of w(t,z) and necessary moment estimates are derived in
Lemma 4.4. Since (4.25) is satisfied for all B € Fr, we must have

/B(uo(w))w(o,x) dw—l—/ﬂ(ﬁ(t,x))atw(t,x) dt dx
R

It

+ /C(ﬂ(t,x)) ~V1/J(t,x)dtdx+%/02(m,ﬂ(t7m))ﬁ”(ﬂ(t,x))w(t,x) dz dt

T
+0/R/o(x,u(t,x))ﬂ’(u(t,x))w(t,x) dedW(t) >0 P-as.

In other words, u satisfies the stochastic entropy condition. O
5. Existence of strong entropy solution

In this section we establish that the vanishing viscosity limit v(¢,2) = u(t, z) is in-
deed a strong entropy solution. To this end, let @(t) = u(¢,x) be an Fi-predictable and

L?(R)-valued process with

sup E[Ha(t)”i] <oo, forallT >0, p=24,.. (5.1)
0<t<T
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Furthermore, let 8 be a smooth convex function approximating the absolute value in R
and ¥ € C°([0,00) x R) be a nonnegative test function. For constants § > 0,y > 0,
define

®s,80 (ta T, Svy) = Pso (t - S)Qﬁ(x - y)¢(8,y)-

Lemma 5.1. For each T > 0, there exists a deterministic function A(J,dy) such that

il

<-F

T

//O’(.’I}, a(r, x))ﬁ' (ﬂ(r, x) — v) @5,5,(r,x,8,y) de dW (r) ’U:v(s’y) dy ds

x

/ o(z,a(r,z))o(y,v(r,y))B" (a(r,z) — v(r,y))

IIr IIr

X @56, (1,2, 8,y)drdrdyds| + A(S, 6o).
Furthermore, for fixed &, ¢ and B, the function A(d,dq) has the property that
5101210 A(6,80) = 0.

A significant part of the proof is built on ideas borrowed from (8], and the proof
requires some preparation. Given a nonnegative test function ¢ € C° (Il x II) and
B8 € C(R) such that /', ﬂ“ € Cp(R), define

J[B, é](s;y,v // z,u(r,z))B(a(r,x) —v)d(r,z,s,y)dz dW (r)

where 0 < s < T, (y,v) € R x R.
Since the test function 1 has compact support, there exists ¢4 > 0 such that
J[B,9l(s;y,v) =01if |y > cp and 0 < s < T.

Lemma 5.2. The following identities hold:

I 1B, ¢l (s:y,v) = J[-B', 0] (s;y,v)
ayj[ﬁv(b](s;yav) = J[678y¢](8;y7’0).

Proof. The proof is similar to the that of Leibniz integral rule. 0O

Lemma 5.3. Let 8 € C°(R) be function such that 8',5" € C°(R). Then there exists a
constant C = C(f', 1) such that

(ﬂ' ¥)
oilslp (B[ T[8, d5.50] (55 ||L°°(1R><]R)) < 52 (5.2)
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Proof. We intend to establish (5.2) with the help of appropriate Sobolev embedding
theorem. To this end, we begin with

E[||718. 85 6,) (55|,

- EU/!J[B,¢a,50](8;y7v)\4dydv]

o (@, i(r,z)) B (a(r, ) - v)

4
X psy (r = 8)os(x — y)(s,y) de dW(r)

dy dv]

(by BDG inequality)
< C//E (/T‘/J(x,ﬁ(n:v))ﬂ(ﬂ(r,x) —v)
vy 0 =

5 2
X pao(r — )05 (& — 1)0(5, ) d dr> ]dydv
T
SC/ / E (//02(x,ﬂ(r,x))ﬁ2(ﬂ(r,x)—v)
v |y|<Cy 0 z
x p3, (r = 8)os(z — y)P*(s, y) da d?‘) ] dy dv

gc/ / E O/Tz/a‘*(x,a(r,x))ﬁ‘*(a(r,x)—v)

v |y|<Cy
X 03, (r = s)os(w = y)v*(s,y) do dr] dy dv

[ ] el

ly|<Cy 0 = |v|<Cg+|u(r,z)|

<CFE

X Pfsl(, (r —s)os(x — y)||P||% dvdx dr dy]

T
wE| [ [a @il
0

xT




I.H. Biswas, A.K. Majee / Journal of Functional Analysis 267 (2014) 2199-2252 2239

X (Cg + (1 + |ﬂ(r,m)‘))p§0(r —3) dﬂcdr]

T

// )(1+ |a(r, z)| )pﬁo(r—s)dxdr]

0 z

CB.Y)E

T
) /(1 + EHfL(r, ~)H§)p§0(r —8)dr
0
T

<C(b’,w)(l—l—oilrlgTEHfL(r,-)Hz)/pﬁo(r—s)dr

0
T
_ 5 3
0(671/}) (1 + O;EIS)TEHU(T’ )H5> ||p50 Hoo b/p50 (T — S) dr

C(B, %) (1 + supg<,<p Ella(r, )II3) '

B % (5.3)

Similarly, we have
B[0,718. 655,)(s:- 3] < L0 -
E[Hay‘][ﬁa ®5,60](85+57) ’i] < (ﬂég ) (55)

Therefore, by (5.3), (5.4), and (5.5),

4 CB,v)
E[H‘][Ba¢5,5o]<s; ".)HW1v4(]R><R)] < T
We simply now use Sobolev embedding along with Cauchy—-Schwartz inequality and
conclude

\ /\
O

sup ({18, 6550)(5:] 2y )) < S,

0<s<T 52

(5.6)

Our primary aim is to estimate the expected value of J[8', ¢5.5,](s;y, v(s,y)), which
we do by estimating the same for J[3’, ¢s.5,](5; y, us(s,y)) and then passing to the limit.
Note that if we directly substitute v = v(s,y) in the formula for J[§’, ¢s5,], the integrand
would no-longer be nonanticipative, and therefore standard methods It integrals would
no-longer apply. To work around this problem, we proceed as follows.

Let {p;}i>0 be the standard sequence of mollifiers in R and define
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Ze 5,60, —// ! 05,60 ] (539, v) pr (ue(s,y) —v) dy ds dv. (5.7)

R IIp

We would like to find an upper bound on E[Z, 55,:] as [, — 0. To this end, we claim
that for two constants 17,715 > 0 with T} < Tb,

B| X, / J(t) dW(t)] —0 (5.8)

T

where J is a predictable integrand and X (-) is an adapted process. The conclusion (5.8)
follows trivially if J is a simple predictable integrand. The general case could be argued
by standard approximation technique.

If necessary, we extend the process u.(-,y) for negative time simply by wu.(s,y) =
u:(0,y) if s < 0. With this convention, it follows from (5.8) that

E[//J[ﬂla¢5,50](5;y70)m(us(5—50,y)—U) dy ds dv| = 0.

R It

Hence

E(Z. 550, [//Jﬂ D5.50) (859, v) (o1 (us(s,y) — v)

R Il

= pi(ue(s — do,y) —v)) dyds dv]|. (5.9)
Given y € R, u.(-,y) satisfies

du.(s,y) = —div F; (uE(s, y))ds + eAuc(s,y)ds + o. (y, ue (s, y)) dW (s).

Next, apply It6-formula and obtain

pi(us(s,y) —v) — pi(ue(s — do,y) — v)

S

= / P; (us(Tv y) - U) (_ div F; (us(Tv y)) + EAUE(Ta y)) dr

8750

S

+ / e (y, u=(7,9)) pi (ue (1, y) — v) AW (1)

8760

/ |Js Y, Ue Ty)| P (UE(T y) — )dT

S(SO
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— _% [ / ol (UE(T7 y) — v) (— div F, (uE(T, y)) + eAu. (T, y)) dr
s—0d0

S

+ / Oc (y’ UE(T7 y))pl (UE(T, y) - U) dW(T)

S—(S()

S

+% / o2 (y, ue(1,y)) pi (ue (1, ) — v) dT]-

5750

From (5.9), we now have

EZ. 550,

// (8, #5.60] (5,0 ){—3< / o1(ue(r,y) — v) (= div . (ue(, )

R HT 5— 0

S

4 eAua(r,y)) dr + / 0 (11 e (7, ) 1 (1t (7, ) — v) AW (7)

S*(SO

S

+% /|Jg(y7us(ﬂy))|2pg(u€(7,y)—v)d7>}dydsdv]

8750

(by the Ito6-product rule and Lemma 5.2)

- E //J[ﬁ//7¢5760}(5;y,v)< / pi(ue(7,y) — v) div F. (us(7,y)) d7'> dydsdv]

R HT S—(Sg

_E //J[ﬂ//,¢5,6o](5;y’v)< / pl(UE(T,y)U)aAUE(T,y)dT> dydsdv]

-R HT 5—50

o[ [ [ [ ([ 70 -ntenn - @)oo

“IIr r s—6p R

X O¢ (yv Ue (7", y))¢5,50 (Ta z,s, y) dr dx dy d8‘|

// g ¢550 $,Y,0)

R IIt

X { / o: (y,uE(T, y))pl (us(T, y) — v) dT}dy ds dv]

5750
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= AL5(6,80) + AL5(8,80) + B8, 80) + AL5(5,60) (5.10)
where
All’s((;a 50)

=F / / J[BN7 d)éﬁo] (S; Y, U) ( / pi (UE(T7 y) - U) div F, (ua(Tv y)) dT) dyds d’U]

R Ir s—3d0

ALE(5, 60

— _E / J[ﬂ”, ¢5,6o] (s;y,v) ( / ol (ug(T, y) — v) eAuc(T,y) dT) dy ds dv]

R Ir s—do

B(4,60)

=—F / / / (/ B (a(r,z) — v)pi(ue(r,y) —v) dv)a(x,ﬂ(r, z))

I+ © s—6g R
X 02 (Y, ue(r,y)) ds.50 (1, 2, 5, ) dr d dy ds]

ALE(6,60)

= ;El / J[B", ¢5.5,] (s;y,v>{ / o2 (y, ue(7,)) pr (ue (7, y) — v) dT} dy ds dv]

R IIr s—30

Let A5(8,80) := limy_,o A}°(8,80) and A;(6,do) = limsup, o | A5 (8, do)|-
Lemma 5.4. It holds that
A1(8,80) = 0 as 6y — 0. (5.11)

Proof. We start by letting

Ge(u,v) = /ﬁ”(u —r)EL(r)dr for u,v € R.
0

It is straightforward to check that there is a positive integer p such that

sup|Ge(u,v)| < Cg(1+ [ul?) for all u,v € R. (5.12)
e>0

Let
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Xelos.50](s59,v // x,u(r, x) (ﬂ(r,x),v)qﬁ&gg(nm;s,y) dx dW (r)
Once again by the same arguments as in Lemma 5.2, it holds that

X:[9s.5,) (839, // x, u(r, x) ﬁq,G ( (r, ),v)qﬁ&go(r,x;s,y) dx dW (r)

0y Xclps.501(55y,v) = Xc[0ybs.6,](559, v).

Moreover, we can argue as in Lemma 5.3 and find a constant C' = C(3, ) such that

N (6 1/))
?igozlslgT(E[HXa[ayd)é,(So](S, ) ]LW(RxR)}) < 62 (5.13)
Claim.
Ai(é,éo)——E[/ /Xg[aycba,ao](s;y,ue(f,y)) dnisdy]. (5.14)

HT 8—50

Proof of the claim. We repeatedly use integration by parts and have

/ / J[ﬁ",m,aa](s,y,v)( / pl(w,y)v)F;<v>ayu5<T,y>dT> ds dy dv

v Ip s—0o

:// /S /T/a(:p,a(r,x))ﬁ"(ﬁ(h%) V) FL(0) s 5, (1,58, y)

v HT.Sféo 0 z

x pi(ue(1,y) — v)Oyue (1, y) AW (r)dz dr ds dy dv

=// / O Xc[hs5.5,](83y,v)pr (ue (1, y) — v)Oyuc (7, y) dr ds dy dv

v HT 8—50

:// /SXs[¢5,50](8;y,v)pf(us(ﬂy)v)ayus(Tvy)desdydv

v IIT s—dp

=// /SXa[(bé,éo](‘g;yvU)aypl(us(Tay)_U) dr ds dy dv

v HT 8—50

// / Oy X<[05.6,) (539, 0) pu (ue (7, y) — ) dr ds dy dv

v IIT s—dp
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S

= —// / X [0y05,50](s:y,0)pi (ue (1, y) — v) dr ds dy dv. (5.15)

v HT 8—50
We simply let [ — 0 in both sides of (5.15) and obtain

S

/ / J[B,/,¢5,50] (s;yvui(Ta y)) ley FE (us(Tv y)) drds dy
IIT s—dp

S

:7/ / X [0y¢s,50) (839, ue (7, y)) dr ds dy. (5.16)

HT 5750
We take expectation in both sides of (5.16) and the claim follows. 0O

Now

S

lim sup|A§(6, 50)’ = limsup|F / / Xg[ay(j)g,go}(s;y,ug(ﬂ y)) dr ds dy]
el0 el0 e 56
< Cby sup sup E[|| Xc[0y¢s.5,](s; )| ]
0<s<T >0

< Coy sup sup(E[[|Xc[0y@5.,](5:-)]|°.]) 2
0<s<T >0

SOéoC(ﬁg(b)

Jg

< C1(B, )03

In other words, A;(8,85) < C1(8, )03, and therefore
A1(6,00) >0 as dp — 0. O
Next, we define
Ay(3,60) = hn;;upmg((s, do)| where A5(6,d0) = lim ALE(5,80) (5.17)

Lemma 5.5. It holds that

AQ((S, 50) —0 as 50 — 0. (518)
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Proof. From the definition of Aé’s(é, o), it follows that

A5(6,80) == lim AL%(5,40)

l—o0

-F L/ / J[B", 5,60 (539, ue(T, ) eAuc (7, y) dr ds dy| .

T 5—30

Hence, by chain rule and integration by parts,
A3(9,00)

=FE //S/T/ecr(x,ﬁ(r,x))ﬂ'(ﬁ(r,x)

HT 5750 0 =z

— ue (T, y))ayym,go (r,x;s,y) de dW (r) dr ds dy]

S

2
—-E l / / J[B", d5.50) (839, uc(1,9)) | Vyue (T,y)|” dr ds dy]
HT 8—60
=17+ I5.
Now, we use the uniform moment estimates and conclude that

lirralJ/%up‘Iﬂ = EF&‘Iﬂ = 0. (5.19)

Thus

limsup‘AS(d, 50)‘ < limsup’IS , (5.20)
el0

el0
and need of the hour is to estimate I5. Define

t

MYy [8” 1, 68] (5, v0) = / / o (. ar, 2)) 8" (i(r, 2) — v) (s, y)es (x — y) de AW (1),

s—dp T
where t > s — dg. We now invoke Ité-product rule and obtain

S

J[ﬂ”/, (1)5750} (8, Y, 'U) = — / Piso (t - S)Mst—éo [5H/, 1/1, 5] (y, U) dt

5760
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Therefore
187 650) 55 ey < 550 (M, 18,3080 ey
In other words
B[ s 1708" 650) 557 )
<l I = Ne [0 )

(5.21)

where

[[3”’ 1, 6 y, // x,a(r, ) ’”( (r,x) — )w(s,y)gg(a:fy) dx dW ().

By a certain modulus of continuity estimate [8, Lemma 4.28, p. 359] for paths of N;, we
have

B[ sw N[00 () - N[ a (L] <os (5:22)

5,t€[0,T];|s—t|<do

for some a > 0 and p > 8. We combine (5.22) and (5.21) to have

1 a
E[Oiup (18", b5.50] (555 ”LO@(]RX]R)} < 0%50 (5.23)
for some a > 0 and p > 8.
Next, we define
t
2
A(t) = /5{|Vyu€(r)||2.
0
From the moment estimate in Proposition 4.1 we have
sup E[|A(T)|"] < o0, for p=1,2,---,T>0. (5.24)
e>0
Finally, we now focus on I§ and have
T s
e E[ [ s 9187 6ss ]l el Tyt dr dyds
0<s<T

0 |y|<Cy s—do
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(by Fubini theorem)

T T+50
<B| s "ol [ </ E'Vy“s“’”'z‘“) ‘“d‘”]
0<s<T
ly|<Cy 7=0 ‘s=7
T
=8B | sup |[J[B", 58] (si,)]| / /E‘Vyue(Tay)‘Zdey‘|
0<s<T
lyl<Cy 7=0
S 60E|: sup "J[ﬁ,//a¢6,5o](s; a)HOOAE(T)]
0<s<T

(by Holder with p > 8)
1

< & (EOESETHJ[’BW’ $5,5] (5; )HZO) " (B[|4-(D)|")

(by (5.23) and (5.24))
<0, (5.25)

for some a > 0. In other words, there exists @ > 0 such that
limsup|Z5| < C(8,4)55
el0

and hence

AQ((S, 60) —0 asdy— 0. O (526)
Finally, we define
A3(8,80) = limsup lim | A" (8, &) | (5.27)
€l0 1—0

Lemma 5.6. It holds that

As3(d,00) =0 as dp — 0.
Proof. By integration by parts, we have
A6, 60)

1
=_-F
2

/ J[ﬁ”/, ¢5,50] (s; y7v){ / o'g (:[/7’11,5(7'7 y))pl (UE(T, y) — ’U) dT} dy ds Cl’l)‘| .

R HT 8—50
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Therefore

//T / /s|“][5m7¢5,50](s;-,-)

v 0 |y|<Cy s—30

| AL (8,00)| < E

| o002 (ys us(7,9))

x pi(us(7,y) — v) drdy ds dv]

S

_ g /T / /\!J[ﬁ”’,¢a,5o](s;-,~>

|y|<C¢ s—dp

S

ly1<Cy 550
T s

<cf [ bl
0

><<E / g4(y)(1+|u5(7,y)|4)dy)éd7ds

ly|<Cy
/ / 1t Bllue(r)]|")* drds
0 s— 50
c (s, z/;)é“T[lJrsup sup EB||uc(t,-)|| }
£>0 0<t<T

Thus

hrnsuphm|A (4, 50)} < C’(,@,w,T)(SO%
el0

and hence A3(d, dp) has the desired property. O
Lemma 5.7. It holds that
. . el _ - -
lglﬁ)l lllf(r)lB (6,00) = E[/ /J(;v,u(r, x))a(ym(r, y))ﬂ (u(r x) —
IIr p

X ¢5,60 (T, 2, 8,y) dr dz dy ds
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|0 (v, ue(r.)) dr dy dS]

u(r,y))

- T
<ol [ [ ] “J[ﬂ””%«sohs;~,->||w92<y><1+|u5<r,y>|2)drdyds]
-0

(5.28)

(5.29)
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Proof. Since ||8”(")||c < 00, we can use dominated convergence theorem and conclude

lim le 3,80) =

1—0

/ / / B (a(r,z) = ue(r,y))o (z,a(r, ) oe (y, u=(r,y))

HTQ’/‘S 50

X @55, (1, x, 8,y) dr dx dy ds]

_ E[ / / 8" (ar, ) — ue(r, ) (2, 6(r, 7)) (y, u=(r, )

It It

X $5,60 (1, 2, 8,y) dr dz dy dS} (5.30)

We use the uniform integrability conditions along with approximation properties of o.
and pass to the limit € | 0 to obtain

lim lim B&* (6,00) :—E{// murm (y, (r, y))ﬂ”( (r,x) — v(r,y))

€10 110
IIr Ip
X @560 (T, 2, 8,y) dr dz dy ds|. O

We can now finally wrap up the proof of Lemma 5.1.

Proof of Lemma 5.1. We now simply choose A(d,d¢) = A1(0,d0) + A2(d, d0) + As(d, o).
Note that, in view of (5.7),

E i/]/0($,ﬁ(T7$))ﬂ/(ﬁ(T,1’)—U)¢5,50(T,$7S,y)dl‘dW(T){U_v(&y)dyds
0y 0 =

= limlim F[Z. 55,.]
<10 110

= lim lim[A}" + A5" + AS' + B=1(5,0))]
£l0 110

< hrnsuphm|A€ (9, 60) |+hmsuphm|A (9, 50)|
el0 el0

+ hmsuphm‘AE (6,00) ’ + hmhmBEl
€l0

= A1(3,00) + A2(6,00) + A3(8,80) + hHOl 111%1 B!

A(5,60) — [// 2,5, 2)) o (3,00, ) 8" (a(r, ) — o(r, )

Il IIr

X ¢s.5,(r, 2, 8,y) drdz dy ds}
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where we have used Lemma 5.7. Furthermore, by Lemmas 5.4-5.6, the function A(4, dg)
has the desired property as ég — 0. O

We have seen from Lemma 4.8 that v(¢,z) = u(t, z) is a stochastic entropy solution.
Moreover, we conclude from Lemma 5.1 that u(t, ) is indeed a stochastic strong entropy
solution of (1.1)—(1.2), which completes the proof of Theorem 2.3.

6. A critique on the strong-in-time formulation

In this final section, we will contest the suitability of strong-in-time formulation of [8]
and try to make a case for weak-in-time formulation. However, the issues that we are
going to raise are purely technical in nature and do not any way disturb the broader
message of [8]. We could not have emphasized more on the fact the article [8] is no less
than a milestone in the area.

For any LP-valued solution process u(-, ) with continuous sample paths, it is easy to
see that the strong-in-time and weak-in-time formulations are equivalent to each other.
Furthermore, if it is not established that the solution process has continuous paths then
weak-in-time formulation is certainly a more appropriate way to move forward. Just as
in the deterministic case, the authors use vanishing viscosity method for existence in
[8] and attempts have been made in [8] to justify that the vanishing viscosity limit has
continuous sample paths when treated as an My-valued process. To be more precise, it
is shown in [8, Lemma 4.23, p. 355] that

ltiglE[r(uo(t),uo(S))} =0, (6.1)

and a claim has been made that (6.1) implies that p(-) has continuous sample paths
as My valued process. We strongly disagree with the derivation of (6.1) in the proof of
[8, Lemma 4.23, p. 355]. Moreover, the claim that po(-) has continuous sample paths
because of (6.1) is also wrong. In fact, we make a counter claim that an estimate of type
(6.1) may not imply path continuity. To see this, let N; be the usual Poisson process
with parameter A\ > 0. Then

lim E[dg (N, N,)] = lim E[|N; = N,[] = lim At — | = 0, (6.2)

but NV; clearly does not have continuous sample paths. Therefore, 1(+) cannot be claimed
to have continuous sample paths on the basis of (6.1) alone. This invalidates the claim in
[8, Lemma 4.22, p. 355] that po(t) has trajectories in C([0, 00), M), and puts a question
mark next the entropy inequality [8, (74), p. 355].

Moreover, the proof (6.1) in [8, Lemma 4.23, p. 355] is incorrect due to the lapses in [8,
Lemma 4.15, p. 343]. To elaborate on this point, let us look at the proof [8, Lemma 4.15,
p. 343] where it is shown that
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oo

Eﬁ)lE[d( pe (), po(- 1518 e "E[min (1, r(pe(t), po(t)))] dt = 0. (6.3)

0

Clearly, (6.3) only implies that lim. o E[r(pe(t), to(t))] = 0 for almost every ¢ > 0,
contrary to the claim in [8, Lemma 4.15, p. 343] that lim. o E[r(u.(t), po(t))] = 0 for
every t > 0. This jeopardizes the claim that

lsiilol(lu’s(tl)a 7:U'6(tm)) = (/‘LO(tl)a ,,LLO(tm)) in probablhty

for each 0 < t; < --- < t,,,. We object to the wording ‘for each 0 < t; < --- <t In
our view, the correct wording should be ‘0 < t; < --- < t,, where t;’s are chosen from
a set of full Lebesgue measure in [0,00). Hence, one would only be allowed to pass to
the limit in € in [8, (73), p. 354] for almost every (t,s) € [0,00) x [0,00), and [8, (74),
p. 355] would be valid only for almost every (¢,s) € [0,00) x [0, 00).

Therefore, it is fair to say that the vanishing viscosity limit does not have sufficiently
clear point-wise picture in time for its paths, and it is worthwhile to go for the weak-in-
time entropy formulation for (1.1). It is worth mentioning that it may well be possible
to prove the path continuity for the entropy solution, but the methods of [8] are not
adequate for that. Also, the weak-in-time formulation has an immediate correspondence
with kinetic formulation of [5]. Though the model that is considered in [5] deals with
periodic solutions, kinetic solutions are claimed to have continuous paths. It may be
possible to develop kinetic solution framework in a general case, which might help to
establish path continuity for our framework.
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